A 5-11GHz True-Time Delay Utilizing a Pseudo-Time Delay **Circuitry in 65nm CMOS**

DEC Chip Design Contest

Jeong-Moon Song and Jung-Dong Park Division of Electronics and Electrical Engineering, Dongguk University

Introduction

UNIVERSITY

- A typical true time delay circuit has a group delay error due to the self-resonance frequency of inductor. > We propose double artificial delay line structure to
 - decrease the error

A block diagram of the proposed true time delay circuit

Acknowledgements

The chip fabrication and EDA tool were supported by the IC Design Education Center(IDEC), Korea. And supported in part by the National Research Foundation of Korea grant funded by the Korea Government (MSIP) under Grant 2019M3F6A1106118 and Grant 2018R1C1B5045481

Measurement results K evsight N5224A True Time De

< True Time Delay Measurement > Fig. 6. Measurement setup of True Time Delay Circuit

Fig. 7. Measured and Simulated phase state result, S21 of Main bit State

Comparison table

Ref.	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[This Work]
Maximum Delay	35.2	400	32.8	42	12.5	106	250	400
f _{RF} [GHz]	20-30	1-20	10-50	15-40	20-40	5-20	6-18	5-11
Chip area [mm ²]	0.18 (Core)	4	0.22	0.99	0.1	0.88	2.45	2.91
Resolution	0.56ps	5ps	cont	3ps	cont	3.12ps	Ips	1.54ps
DC power [mW]	-	2.6-6	passive	8.6-24.6	33	passive	passive	passive
Gain [dB]	-	-	±1.3	±2	±1.4	-	-	-
Tech	65nm cmos	130nm cmos	250nm sige	130nm cmos	250nm sige	180nm cmos	180nm cmos	65nm cmo
Structure	TTD (convention al)	TTD (with trom bone)	TTD (with varact or lc)	TTD (with tromb one)	TTD (with varacto r lc,Gm-RC)	TTD (convention al)	TTD (conventio nal)	TTD
Loss/Delay [dB/ps]	0.35	0.06	0.47	0.36	-	0.19	0.1	0.075

1. W. Lee and S. Hong, "Ka-Band Inductor-Shared SPDT DPDT Switches and Their Applications to TTD Phase Shifter,"

- IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 7, pp. 2546-2554, July 2019.
 F. Hu and K. Mouthaan, "A 1–20 GHz 400 ps true-time delay with small delay error in 0.13 µm CMOS for broad phased array antennas," 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, 2015, pp. 1-3. 2.
- Q. Ma, D. Leenaerts and R. Mahmoudi, "A 10-50GHz True-Time-Delay phase shifter with max 3.9% delay variation," 2014 IEEE Radio Frequency Integrated Circuits Symposium, Tampa, FL, 2014, pp. 83-86. 3.
- 4.
- P. Sanggu and J. Sanggeun, "A 15-40 GHz CMOS TrueTime Delay Circuit for UWB Multi-Antenna Systems," Microwave and Wireless Components Letters, IEEE, vol. 23, pp. 149-151, 2013.
 Q. Ma, D. Leenaerts and R. Mahmoudi, "A 12ps true-time-delay phase shifter with 6.6% delay variation at 20-5.
- 40GHz," 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Seattle, WA, 2013, pp. 61-64.J Y. Choi, M.-K. Cho, D. Baek, and J. Kim, "A 5-20 GHz 5-bit true time delay circuit in 0.18 μm CMOS technology
- Journal of Semiconductor Technology and Science, vol. 13, no. 3, pp. 193-197, Jun. 2013. 이상훈, 나온식, 이성호, 이성철, 시문교. (2017). 0.18-µm CMOS 공정을 이용한 6~18 때 8-비트 실시간 지연 7. 회로 설계. 한국전자파학회논문지, 28(11), 924-927.

